Lower bounds for the error decay incurred by coarse quantization schemes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lower bounds for the error decay incurred by coarse quantization schemes

Several analog-to-digital conversion methods for bandlimited signals used in applications, such as Σ∆ quantization schemes, employ coarse quantization coupled with oversampling. The standard mathematical model for the error accrued from such methods measures the performance of a given scheme by the rate at which the associated reconstruction error decays as a function of the oversampling ratio ...

متن کامل

Combinatorial Lower Bounds for Secret Sharing Schemes

In a perfect secret sharing scheme, it holds that log 2 j ^ V i j H(S), where S denotes the secret and ^ V i denotes the set of the share of user i. On the other hand, it is well known that log 2 j ^ Sj > H(S) if S is not uniformly distributed, where ^ S denotes the set of secrets. In this case, log 2 j ^ V i j H(S) < log 2 j ^ Sj : Then, which is bigger, j ^ V i j or j ^ Sj ? We rst prove that...

متن کامل

Lower Bounds for Visual Cryptography Schemes

A visual cryptography scheme is a method to secretly share an image among a given group of participants. In this paper, we investigate the best pixel expansion of different models of visual cryptography schemes. In this regard, we consider visual cryptography schemes satisfying the model introduced by Tzeng and Hu [13]. In such a model the recovered secret image can be darker or lighter than th...

متن کامل

Lower bounds on dissipation upon coarse graining.

By different coarse-graining procedures, we derive lower bounds on the total mean work dissipated in Brownian systems driven out of equilibrium. With several analytically solvable examples, we illustrate how, when, and where the information on the dissipation is captured.

متن کامل

Some lower bounds for the $L$-intersection number of graphs

‎For a set of non-negative integers~$L$‎, ‎the $L$-intersection number of a graph is the smallest number~$l$ for which there is an assignment of subsets $A_v subseteq {1,dots‎, ‎l}$ to vertices $v$‎, ‎such that every two vertices $u,v$ are adjacent if and only if $|A_u cap A_v|in L$‎. ‎The bipartite $L$-intersection number is defined similarly when the conditions are considered only for the ver...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied and Computational Harmonic Analysis

سال: 2012

ISSN: 1063-5203

DOI: 10.1016/j.acha.2011.06.003